Mapping genetic values to fitness#
- class fwdpy11.GeneticValueToFitnessMap#
ABC for functions translating genetic values into fitness.
- property maps_to_fitness#
Returns True if object represents a mapping directly to fitness, and False otherwise.
New in version 0.7.0.
- property maps_to_trait_value#
Returns True if object represents a trait value, and False otherwise.
New in version 0.7.0.
- property shape#
Returns the shape (dimensonality) of the object
New in version 0.7.0.
- class fwdpy11.GeneticValueIsTrait#
ABC for functions mapping genetic values representing traits to fitness.
- class fwdpy11.GeneticValueIsFitness#
Type implying the the genetic value is fitness.
- class fwdpy11.Optimum(optimum, VS, when=None)#
Parameters for a trait optimum.
This class has the following attributes, whose names are also kwargs for intitialization. The attribute names also determine the order of positional arguments:
- Parameters:
New in version 0.7.1.
Changed in version 0.8.0: Refactored to use attrs and inherit from low-level C++ class
- asblack()#
Return a string representation formatted with black
- asdict()#
Return dict representation
- classmethod fromdict(d)#
Build an instance from a dictionary
- class fwdpy11.PleiotropicOptima(optima, VS, when=None)#
Parameters for multiple trait optima
This class has the following attributes, whose names are also kwargs for intitialization. The attribute names also determine the order of positional arguments:
- Parameters:
New in version 0.7.1.
Changed in version 0.8.0: Refactored to use attrs and inherit from low-level C++ class
- asblack()#
Return a string representation formatted with black
- asdict()#
Return dict representation
- classmethod fromdict(d)#
Build an instance from a dictionary
- class fwdpy11.GaussianStabilizingSelection(is_single_trait, optima)#
Define a mapping of phenotype-to-fitness according to a Gaussian stabilizing selection model.
Instances of this trait must be constructed by one of the various class methods available.
- classmethod pleiotropy(optima)#
Stabilizing selection with pleiotropy.
- Parameters:
optima (List[fwdpy11.PleiotropicOptima]) – The optimum values. Multiple values specify a moving optimum.
- classmethod single_trait(optima)#
Stabilizing selection on a single trait
- Parameters:
optima (List[fwdpy11.Optimum]) – The optimum values. Multiple values specify a moving optimum.